
Summary 

Introduction 

The Poisson distribution is a discrete probability distribution used to model the number of 
events that occur in a given time interval. This distribution is commonly used in many 
fields of science, engineering, and medicine. Therefore, accurate estimations of Poisson 
parameters can be very important as minor imprecisions can result in greatly different 
outcomes in its applications. In the paper “Bayesian and Non-Bayesian Interval Estimators 
for the Poisson Mean”, Nadarajah and colleagues compared various estimators for the 
Poisson mean. The novelty of this paper originated from its unique comparison of various 
classical interval estimators with Bayesian credible interval estimators using simulation 
and real-life data. Through such, the authors provide a comprehensive evaluation of the 
various Poisson mean estimators. Unlike previous papers, the inclusion of Bayesian 
estimators is especially important for future applications of the Poisson distribution which 
involve strong prior information. In order to better understand the context of our report, 
we have summarized Nadarajah’s and colleagues’ paper. 

Although many classical interval estimators such as the score (SC) interval, Wald (WA) 
interval, exact (EX) interval interval, and bootstrap (Boot) confidence interval were 
discussed in the paper, the Bayesian credible estimators were most relevant to the contents 
of STATS 619 and our entire report. Hence only an overview of the various Bayesian 
credible intervals was discussed in detail in this introduction. However, as the classical 
interval estimators were a significant part of the author’s study, their results were included 
in summary, and the respective methods were further introduced in section 3 of the report 
where they were implemented. 

Bayesian priors 

As Bayesian inference is heavily dependent on the prior distributions used, the paper 
included various informative and non-informative prior distributions for the derivation of 
the posterior distributions. These prior distributions included the uniform prior, Jeffreys 
prior, exponential prior, gamma prior, and chi-square prior. Below the prior distributions 
and their resulting posterior distributions for a random sample 𝑋𝑖 from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) are 
shown. These findings were used in the analysis downstream involving the interval 
estimators. 

Uniform prior 

With the uniform prior 𝑃(𝜆) ∝ 1 with 𝜆 > 0, the posterior distribution we obtain is 
Gamma(∑ 𝑥𝑖

𝑛
𝑖=1 + 1, 𝑛) 



Jeffreys prior 

With the Jeffreys prior 𝑃(𝜆) ∝ 𝜆−1/2 with 𝜆 > 0, the posterior distribution we obtain is 
Gamma(∑ 𝑥𝑖

𝑛
𝑖=1 + 1/2, 𝑛) 

Exponential prior 

With the exponential prior 𝑃(𝜆) ∝ 𝑎𝑒−𝑎𝜆 with 𝜆 > 0 and 𝑎 > 0, the posterior distribution 
we obtain is Gamma(∑ 𝑥𝑖

𝑛
𝑖=1 + 1, 𝑛 + 𝑎) 

Gamma prior 

With the gamma conjugate prior 𝑃(𝜆) ∝ 𝜆𝑏−1𝑒−𝑎𝜆 with 𝜆 > 0, 𝑎 > 0, and 𝑏 > 0, the 
posterior distribution we obtain is Gamma(∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑏, 𝑛 + 𝑎) 

Chi-square prior 

With the chi-square prior 𝑃(𝜆) ∝ 𝜆𝑏/2−1𝑒−𝜆/2 with 𝜆 > 0 and 𝑏 > 0, the posterior 
distribution we obtain is Gamma(∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑏/2, 𝑛 + 1/2) 

Bayesian credible intervals 

With the previously derived posterior distributions above, various Bayesian credible 
intervals were utilized in the paper including the Equal (EQ) tails credible interval, Jeffreys 
(Jef) prior credible interval, Highest Posterior Density (HPD) credible interval, and Relative 
surprise (RS) credible interval. The use of the Bayesian posterior distributions in each 
credible interval allows for changes in belief due to previously known information which is 
a key difference between the Bayesian credible intervals and the classical interval 
estimators. Below the Bayesian credible intervals are introduced: 

Equal tails credible interval 

Given a 1 − 𝛼 interval, the probability of being below or above the equal tails interval is the 

same (𝛼/2). Accordingly, the bounds of the interval are [𝜃𝛼/2, 𝜃1−𝛼/2] where 𝑃(𝜃 ∈

[𝜃𝛼/2, 𝜃1−𝛼/2]|𝜃) = 1 − 𝛼. 

Jeffreys prior credible interval 

Unlike the other intervals, the Jeffreys prior credible interval only depends on the Jeffreys 

prior (𝐼(𝜇)1/2) which the authors in the paper claim to be: 

𝐼1/2(𝜇) = 𝑛1/2(𝜇 + 𝑏𝜇2)−1/2 

where n is the number of observations. Using this, the authors denote the Jeffreys credible 
interval for 𝜇 as (𝐽𝛼, 𝐽1−𝛼) where 𝐽𝛼  and 𝐽1−𝛼 are the quantiles in the posterior distribution 
of 𝜇. However this same interval can be determined from the determining the quantiles in 
the posterior distribution obtained with the Jeffreys prior. 



HPD credible interval 

The highest posterior density is the set {𝜃: 𝑃(𝜃|𝑥) ≥ 𝑘} such that 

1 − 𝛼 = ∫ 𝑃
{𝜃:𝑃(𝜃|𝑥)≥𝑘}

(𝜃|𝑥)𝑑𝜃 

In an unimodal distribution like the Poisson distribution, the HPD becomes an interval 
(𝜃𝑎, 𝜃𝑏) such that 

𝑃(𝜃𝑎|𝑥) = 𝑃(𝜃𝑏|𝑥) 

∫ 𝑃
𝜃𝑏

𝜃𝑎

(𝜃|𝑥)𝑑𝜃 = 1 − 𝛼 

Relative surprise credible interval 

Given the null hypothesis 𝐻0: 𝜃 = 𝜃0 the relative surprise credible set is defined as the 
following: 

𝑃 (
𝑃(𝜃|𝑥)

𝑃(𝜃)
>
𝑃(𝜃0|𝑥)

𝑃(𝜃0)
) ≤ 1 − 𝛼 

In a unimodal distribution, this becomes an interval (𝜃𝑎, 𝜃𝑏) such that 

$$ \frac {P(theta_a|x)} {P(theta)} = \frac {P(theta_b|x)} {P(\theta)} \\ 
\int_{\theta_a}^{\theta_b} P(\theta|x) d\theta = 1-\alpha $$ 

Comparison of intervals using simulation and real data application: 

The authors performed comparison using simulation by contrasting coverage probabilities 
and coverage length of the various classical and Bayesian credible intervals. The authors 
described that ten thousand replications were used to compute the coverage probabilities 
and coverage length, a five percent level of significance, and arbitrary hyperparameters 
were used in the simulation analysis. However, no specific data or computational code was 
provided by the authors. The highlights of the results for the coverage probabilities from 
the simulation analysis are summarized below. The authors only provided vague 
descriptions of their comparison and so their exact depictions were included in the table 
below. 

Table 1: Summary of coverage probability trends in simulation 

Estimator Coverage probability 

Wald “Acceptably close to nominal level” 

Score “Acceptably close to nominal level” 

Exact “Acceptably close to nominal level” 

Bootstrap “Unacceptably further away from nominal level” 

Equal tails (uniform prior) “Acceptably close to nominal level” 



Estimator Coverage probability 

Equal tails (other priors) “Unacceptably further away from nominal level” 

Jeffreys prior “Acceptably close to nominal level” 

HPD (uniform prior) “Acceptably close to nominal level” 

HPD (other prior) “Unacceptably further away from nominal level” 

Relative surprise (uniform prior) “Unacceptably further away from nominal level” 

Relative surprise (other prior) “Unacceptably further away from nominal level” 

In addition to the information in the table, the authors also generally found that the equal 
tails credible interval with a uniform prior generally underestimated coverage probability, 
the Bootstrap interval generally underestimated the coverage probability, and the relative 
surprise interval generally overestimated the coverage probability. 

In terms of coverage length, the researchers found that they typically increased with 
greater 𝜆 values, and typically decreased when the n increased except for the HPD and 
relative surprise credible intervals which also coincidentally had the greatest coverage 
lengths. 

Following the use of simulation, the authors also performed analysis using data from 
“Flying-Bomb Hits in London During World War II”[1]. The data was collected from 576 
different 1𝑘𝑚2 regions in London, England during World War II. 

Table 2: Flying-Bomb Hits in London During World War II 

Hit 0 1 2 3 4 5+ 

Observed 229 211 93 35 7 1 

During that time frame, a total of 537 bomb hits were recorded, yielding an average of 0.93 
hits per region. This value was very close to the Poisson mean obtained by the authors 
when fitting the data to a Poisson distribution as shown by the interval estimators 
computed for the Poisson mean. Similar to the previous simulation study, the author’s 
results showed that the coverage lengths were smallest for the exact interval estimator 
followed by the equal tails credible interval, score interval and Jeffreys prior credible 
interval. Once again, no details of the procedure were provided. The interval estimator 
results were summarized by authors in their table below. 

Table 3: Bayesian and non-Bayesian confidence intervals for the mean number of hits 

Interval Lower bound Upper bound Upper - Lower 

WA 0.85338 1.01093 0.15755 

SC 0.85011 1.00752 0.15741 

EX 0.85343 1.00916 0.15573 

Jeffreys 0.8526 1.01006 0.15746 

Bootstrap 0.84375 1.01215 0.1684 



Interval Lower bound Upper bound Upper - Lower 

HPD.u 0.46441 1.39323 0.92882 

RS.u 0.46441 1.39323 0.92882 

EQ.u 0.85343 1.01097 0.15754 

HPD.e 0.46441 1.39323 0.92882 

RS.e 0.46441 1.39323 0.92882 

EQ.e 0.85048 1.00747 0.15699 

HPD.g 0.46441 1.39323 0.92882 

RS.g 0.46441 1.39323 0.92882 

EQ.g 0.85379 1.01107 0.15728 

HPD.c 0.46441 1.39323 0.92882 

RS.c 0.46441 1.39323 0.92882 

EQ.c 0.85352 1.01099 0.15747 

Conclusion 

Ultimately, the authors in the paper found that there results from the simulation and real-
data application were consistent. Consequently, the authors made several vague 
recommendations involving the Poisson mean estimators. The authors proposed the 
following: 

• the best Bayesian credible interval in terms of coverage probability is the Jeffreys 
prior credible interval 

• the best Bayesian credible interval in terms of coverage length are the Jeffreys prior 
credible interval and the equal tails credible interval 

• the best classical interval estimators in terms of coverage probability are the Wald 
interval, score interval and exact interval estimator 

• the best classical interval estimators in terms of coverage length are the Wald 
interval, score interval, exact interval and bootstrap interval 

Although the results from the paper were enlightening to see, we found that the paper was 
incomplete in a few aspects. First, the results lacked reproductivity and credibility due to 
the failure to provide concrete results and a specific methodology. Next, the authors also 
mentioned that they fitted the data with negative binomial and geometric distributions, 
however no results or further discussion of the procedure were provided. Undoubtedly, it 
would be very interesting to see how the estimators fare for other commonly used 
standard distributions such as the negative-binomial and binomial distributions. Finally, 
we also found that the real-life data used in the paper had an excess number of zeros which 
would render zero-inflated distributions particularly useful to fit the data. However, the 
authors do not mention anything in regard to zero-inflated distributions. Accordingly, our 
goal in this report is to reproduce the results in the study for the real-data application to 
verify the findings of the study. We would also like to extend the estimator comparison to 
the binomial and negative-binomial distributions as these are also widely applicable in 



various fields of science, engineering, and medicine. Finally, we would also like to 
investigate the Bayesian credible intervals in zero-inflated distributions as we believe this 
would more accurately model the World War II bomb data and is often overlooked for 
many cases in which the data has an excess number of zeros. The data used and methods 
employed in our analysis were discussed in detail in each section. 

Standard Poisson Model and zero-inflated Poisson Model 

The paper presented discussed the Poisson distribution which is a commonly used discrete 
distribution to model counts. In this section, our first goal was to reproduce the results 
obtained by Nadarajah and colleagues for only select Bayesian credible intervals and prior 
distributions. The second goal of this section was to apply the zero-inflated Poisson 
distribution and compare the results for the same Bayesian credible intervals and prior 
distributions. Our analysis involved the “Flying-Bomb Hits in London During World War II” 
by Feller as this allows for a direct comparison to findings in the Nadarajah’s and 
colleagues’ paper. In our report we will first introduce neccessary background information 
regarding the Poisson and zero-inflated Poisson distribution in a Bayesian context. 

Definition: Poisson Distribution 

Suppose a random variable 𝑌1, . . . , 𝑌𝑛 follows a Poisson distribution with a mean 𝜃 then the 
probability mass function is, 

𝑓(𝑦𝑖) =∏𝜃𝑦
𝑛

𝑖=1

𝑒−𝜃/𝑦𝑖! 

With E(Y) = 𝜃, Var(Y) = 𝜃. 

We assume that the number of counts are constant and that our parameter of interest is 𝜃. 
Therefore the likelihood distribution of Y is given by 

𝑃(𝑦𝑖|𝜃) ∝ 𝜃∑ 𝑦𝑖
𝑛
𝑖=1 𝑒−𝑛𝜃 

## Poisson prior and posterior distributions In our summary of the paper we introduced 
several priors for the Poisson distribution including the uniform, exponential, chisquare, 
and gamma (conjugate) distributions. As we’ve already discussed the resulting posterior 
distribution from these prior distributions, a table of the resulting posterior distributions 
from each prior distribution is included. 

Table 4: Prior and resulting posterior distributions for the Poisson distribution 

Prior Posterior 

Uniform, 𝑃(𝜆) ∝ 1 Gamma(∑ 𝑥𝑖
𝑛
𝑖=1 + 1, 𝑛) 

Exponential, 𝑃(𝜆) ∝ 𝑎𝑒−𝑎𝜆 Gamma(∑ 𝑥𝑖
𝑛
𝑖=1 + 1, 𝑛 + 𝑎) 

Gamma, 𝑃(𝜆) ∝ 𝜆𝑏−1𝑒−𝑎𝜆 Gamma(∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑏, 𝑛 + 𝑎) 



Prior Posterior 

Chisquare, 𝑃(𝜆) ∝ 𝜆𝑏/2−1𝑒−𝜆/2 Gamma(∑ 𝑥𝑖
𝑛
𝑖=1 + 𝑏/2, 𝑛 + 1/2) 

Definition: Zero-inflated Poisson model 

The zero-inflated Poisson model is used when count data contains an excess amount of 
counts for zero. An excess number of zeros could be the result of structural zeros which are 
zero responses that will always be zero. 

Moreover, in the Poisson distribution 𝑌 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃), the variance and expected value of Y 
are assumed to be equivalent (𝜃). However in most count datasets, the variance is much 
greater than the mean. This phenomenon is called over-dispersion which results in 
underestimation of standard error. The zero-inflated Poisson model also accounts for 
datasets that exhibit over-dispersion. 

The zero-inflated Poisson model accounts for over-dispersion and/or excess number of 
zeros by combining the following two layers: 

• First layer: there is a process which generates data according to a Poisson 
probability mass function 

• Second layer: there is another underlying process which determines if the data 
point in the previous process (𝑦𝑖) is zero or non_zero. 

Suppose that 𝑌𝑖 has a zero-inflated Poisson model, then the probability mass function of the 
zero inflated model has two parts. 

𝑃(𝑦𝑖 = 0) = 𝜋𝑖 + (1 − 𝜋𝑖)𝑒
−𝜇𝑖 

𝑃(𝑦𝑖 > 0) = (1 − 𝜋𝑖)
𝜇𝑖
𝑦𝑖𝑒−𝜇𝑖

𝑦𝑖!
 

where 𝜋𝑖  the probability that zeros occur in the data and 𝜇𝑖 is defined as 𝜇𝑖 = 𝑒𝛽𝑥𝑖 . 

The zero-inflated Poisson model can utilize the same prior distributions as the Poisson 
model for 𝜇. However, due to the irregular structure of the PMF in the zero-inflated Poisson 
model, the resulting posterior distributions follow non-standard distributions. Accordingly, 
they were not included this introduction as in our study they were defined through 
computation (see R code). 

Methods and results from our Poisson study 

To verify the results from the study we performed a separate Monte Carlo approximation 
for select posterior distributions and Bayesian credible intervals discussed in the paper. 
For the sake of comparison, We also used the same dataset as Nadarajah and colleagues. 
Ultimately we used four prior distributions (uniform, exponential, gamma, chisquare) and 
two bayesian credible intervals (equal tails, highest posterior density) in our analysis. 



The Monte Carlo approximation procedure was performed with R. Notably, the highest 
posterior density credible interval was obtained using the R package “HDInterval”. 
Hyperparameters for the prior distributions were mostly arbitrarily assigned as the paper 
did not provide these values. The hyperparameters we used were a=2 for the exponential 
prior, a=2 and b=1 for the gamma prior, and 4 degrees of freedom for the chi-square prior. 
Below, we’ve formatted our credible interval results in the same fashion as the paper for 
ease of comparison. 

Table 5: Bayesian credible interval for mean number of hits derived in our study 

Interval Lower bound Upper bound Upper-Lower 

EQ.u 0.853434 1.010965 0.157531 

EQ.e 0.859481 1.007467 0.147986 

EQ.g 0.8521379 1.0092705 0.1571326 

EQ.c 0.8543551 1.0118966 0.1575415 

HPD.u 0.852310 1.009776 0.157466 

HPD.e 0.8493609 1.0062820 0.1569211 

HPD.g 0.8510177 1.0080853 0.1570676 

HPD.c 0.853232 1.010708 0.157476 

Also, the expected mean (𝐸[𝜃]) obtained from each posterior distribution were 
respectively, 0.9305507 with the uniform, 0.9274618 with the exponential prior, 
0.9290059 with the gamma prior, and 0.9313632 with the chi-square prior. 

Methods and results from our zero-inflated Poisson study 

When performing the previous analysis, we noticed that the dataset contained a large 
number of observations with zero hits (229/576). This proportion was suspect of being in 
excess and skewing the data. Through further investigation of the data, we found that the 
variance (0.9357941) was very close to the Poisson means (Table 5) and thus did not 
exhibit over-dispersion. However nonetheless, due to an excess number of zeros in the 
data, we decided to use the zero-inflated poisson model on the dataset. 

The procedure was performed with R, density plots were created with the R package 
“ggplot2”, and the highest posterior density credible interval was again obtained using the 
R package “HDInterval”. As the zero-inflated Poisson model is a non-standard distribution, 
the zero-inflated Poisson distribution was defined using the R package “nimble” which 
utilizes the BUGS language, and was ran using a Markov chain Monte Carlo method 
(MCMC). Similar to the Poisson model, the hyperparameters we used were a=2 for the 
exponential prior, a=2 and b=1 for the gamma prior, and 4 degrees of freedom for the chi-
square prior. The results from the MCMC samples for 𝜇, the Poisson mean, and 𝜋, the 
proportion of zeros in the ZIP model is shown below. 

Table 6: 𝜇 credible intervals from the zero-inflated model 

Interval Lower bound Upper bound Upper-Lower 



Interval Lower bound Upper bound Upper-Lower 

EQ.u 0.8806158 1.0876900 0.2070742 

EQ.g 0.8800066 1.0851498 0.2051432 

EQ.c 0.8810933 1.1005670 0.2194737 

EQ.e 0.8731757 1.0895514 0.2163757 

HPD.u 0.8758169 1.0789005 0.2030836 

HPD.g 0.8782593 1.0820011 0.2037418 

HPD.c 0.8685453 1.0812929 0.2127476 

HPD.e 0.8664861 1.0800814 0.2135953 

Table 7: 𝜋 credible intervals from the zero-inflated model 

Interval Lower bound Upper bound Upper-Lower 

EQ.u 0.0019623 0.1163097 0.1143474 

EQ.g 0.001911032 0.120121044 0.11821 

EQ.c 0.002342905 0.122566570 0.1202237 

EQ.e 0.001125886 0.125914466 0.1247886 

HPD.u 2.382513e-05 1.025548e-01 0.102531 

HPD.g 3.447661e-05 1.067859e-01 0.1067514 

HPD.c 3.689916e-05 1.073418e-01 0.1073049 

HPD.e 3.798213e-06 1.046363e-01 0.1046325 

Also, the expected values obtained for 𝜇 from each posterior distribution were respectively, 
0.9741703 with the uniform, 0.9700634 with the exponential prior, 0.9731058 with the 
gamma prior, and 1.007748 with the chi-square prior. The expected values obtained for 𝜋 
from each posterior distribution were respectively, 0.04488959 with the uniform prior, 
0.04409995 with the exponential prior, 0.04491302 with the gamma prior, and 
0.04683312 with the chi-square prior. Below a table as well as posterior density plots 
comparing the Poisson means from the Poisson and zero-inflated inflated Poisson model is 
also included for comparison. 

Table 8: Mean number of hits from Poisson and Zero-inflated 

Prior Poisson Mean Zero-inflated Poisson Mean 

Uniform 0.9305507 0.9741703 

Gamma 0.9290059 0.9731058 

Exponential 0.9274618 0.9700634 

Chi-square 0.9313632 1.007748 

Below the posterior density for the Poisson mean in the Poisson and zero-inflated Poisson 
model are shown: 



 



 



 



 ## 
Comparison of our results to Nadarajah’s and colleagues’ paper The Monte Carlo 
approximation for the Poisson model was performed in our study to reproduce the results 
obtained in Nadarajah’s and colleagues’ paper. This was performed as the paper did not 
provide their code to replicate the results they obtained. In our study we mostly 
investigated the Bayesian intervals introduced in the paper. In particular, we explored the 
use of the equal tails and HPD credible intervals which are very frequently used. We found 
that our results (Table 5) were only partially comparable to the results obtained in the 
paper (Table 3). First, our results from the equal tails credible interval were very similar in 
terms of the lower bound and upper bound for all prior distributions. In particular all lower 
bounds varied around 0.85 while upper bounds varied around 1.0. Accordingly, this made 
the coverage lengths of our interval very similar to the coverage lengths obtained in the 
paper. However, on the other hand our results for the HPD was very different compared to 
the results in the paper. Unlike the paper, which had very large lengths for the HPD 
interval, we found that our HPD intervals were very similar to the equal tails interval both 
in terms of its lower bound and upper bound. Resultingly, the coverage lengths of the HPD 



interval were also of comparable length which contradicted Nadarajah’s and colleagues’ 
claim that the HPD interval had the greatest coverage length of all Bayesian intervals. 
Although, different hyperparameters were potentially used for our analysis, it is unlikely 
these contributed to significant difference in the upper and lower bounds of the HPD 
intervals. Another possible reason for discrepancy in the upper and lower bounds could 
involve the method used to perform the analysis. It is unclear what method was involved in 
the study’s analysis, however we were confident in the Monte Carlo approximation 
performed in our paper as 𝐸[𝜃] obtained in our study very closely resembled the “true” 𝜃 
(0.93) proposed by the authors. This is certainly an interesting future direction to look into 
as our results contradicted a key finding in Nadarajah’s and colleagues’ paper. 

Comparison between the Poisson and zero-inflated Poisson models 

In our study we applied the zero-inflated Poisson model to the same dataset used 
previously in our Poisson analysis and Nadarajah’s and colleagues’ paper. Our initial 
intuition for applying model was because of the large number of zeros we found in our 
dataset (Table 2). It is possible that some of these zeros could potentially be structural 
zeros. For example, enemies of London would not bomb their own embassies inside 
London, even during World War II. As a result, we believe that our a zero-inflated model 
would better encapsulate the true representation of the data. 

The credible intervals for the parameters 𝜇 which is equivalent to the Poisson mean, and 𝜋 
which is the proportion of zeros are shown in Table 6 and 7. Similarly, the coverage lengths 
of the HPD and equal tails interval are very similarly in size which affirms our previous 
finding. Expectingly, we did find that the both the interval bounds and coverage lengths did 
change in the zero-inflated Poisson model. That is the lower and upper bounds both 
increased in value along with the coverage length. This resulted in a Poisson mean of 
around 0.97 which is only slightly greater in value than the Poisson mean (0.93) obtained 
from the Poisson model (Table 8). This is further confirmed by minimal differences in the 
posterior distributions of the mean in the Poisson and zero-inflated Poisson models (Figure 
1-4). Interestingly, we found that the 𝐸[𝜋] was also only around 0.04 which was quite low 
considering that 229 out of 576 observations were zero. Overall, it appearred that zero-
inflation had very minimal effect on the accuracy of the previous Poisson model. This aligns 
with the idea that overdispersion did not exist in the data as the variance to mean ratio was 
almost 1. Therefore, it appeared that the zero-inflation should not be assumed only from 
the presence of large amounts of zero. However it is notable that this comparison between 
the Poisson and zero-inflated Poisson model is limited by not knowing the true Poisson 
mean of the population and basing it off of the proposed value given by the authors. 
Throughout the study, despite the availability of the package “nimble”, it was also apparent 
that implementation of zero-inflated models were very difficult. We believe that future 
implementations of such models should be included into R. 


