# Investigating the effect of sampling bias on SARS-CoV-2 phylogenetic inference

David H Yang Bioinformatics RIP Seminar (May) Dr. Paul Gordon & Dr. Quan Long & Dr. Michael Hynes

May 19<sup>th</sup>, 2021









# **Phylogenetic Analysis**





**Table 1:** The total number of cases, cases per 1 million population, tests per 1 million population and genome sequences from Canada, China, India, USA, and the United Kingdoms. All statistics were obtained from Worldometer and GISAID on October 7<sup>th</sup>, 2020

| Country:       | Cases     | Cases/1 million<br>population | Tests/1 million<br>population | Genome<br>sequences on<br>GISAID |
|----------------|-----------|-------------------------------|-------------------------------|----------------------------------|
| Canada         | 196,321   | 5,188                         | 226,302                       | 2,714                            |
| China          | 85,659    | 60                            | 111,163                       | 994                              |
| India          | 7,492,727 | 5,414                         | 67,381                        | 3,092                            |
| USA            | 8,334,763 | 25,137                        | 376,047                       | 34,577                           |
| United Kingdom | 705,428   | 10,375                        | 426,333                       | 61,441                           |



# **Difficulties Controlling Sampling Bias**

#### Tests conducted per new confirmed case of COVID-19, Apr 1, 2021

Shown is the daily number of tests for each new confirmed case. This is a rolling 7-day average.





Source: Official data collated by Our World in Data – Last updated 2 April, 10:10 (London time) Our WorldInData.org/coronavirus • CC BY Note: Comparisons of testing data across countries are affected by differences in the way the data are reported. Daily data is interpolated for countries not reporting testing data on a daily basis. Details can be found at our Testing Dataset page.



#### **SARS-CoV-2 Prevalence Metrics**

Percent positive ratio (in %) = 
$$\frac{\# of \text{ positive test results}}{\# of RTPCR \text{ tests}} \times 100\%$$

Infection fatality ratio (in %) = 
$$\frac{number of deaths from disease}{number of infected individuals} x 100\%$$

Case fatality ratio (in %) = 
$$\frac{\text{number of deaths from disease}}{\text{number of confirmed cases of disease}} \times 100\%$$

Serology test: Detection of previous infections via presence of anti-SARS-CoV-2 antibodies





- 1) Investigate the true prevalence of SARS-CoV-2 in each region around the world and the region's corresponding sequencing contribution to public datasets
- 2) Devise a weighted sampling strategy to create sequence subsamples that are representative of SARS-CoV-2 prevalence in regions around the world and different months
- Generate and compare the accuracy of phylogenetic trees produced through weighted sampling and random sampling



#### <u>Aim 1</u>

Investigate the true prevalence of SARS-CoV-2 in each

**region** around the world and the region's

corresponding sequencing contribution to public datasets



# Methodology



#### **Data Collection**

Obtain and calculate seroprevalence metrics



#### **Data Manipulation**

Group statistics by month and region



#### **Data Analysis**

Compare prevalence estimates from each metric



#### **Prevalence**



**Figure 1:** Number of cases and the Institute for Health Metrics and Evaluation's mean estimate of cases in the world from February 1<sup>st</sup>, 2020 to October 31<sup>st</sup>, 2020.



**Table 2**: SARS-CoV-2 prevalence metrics obtained for the five countries and months with the highest seroprevalence findings.

| Location | Month      | Case count | Percent<br>positivity | Serology tests        | IHME estimate |
|----------|------------|------------|-----------------------|-----------------------|---------------|
| Ecuador  | May 2020   | 13896      | 36.54%                | 44.74%<br>(N = 992)   | 573349.3915   |
| Austria  | April 2020 | 5746       | 2.82%                 | 40.71%<br>(N = 3076)  | 22240.91491   |
| Italy    | May 2020   | 29073      | 1.53%                 | 38.12%<br>(N = 17123) | 244049.5844   |
| Pakistan | June 2020  | 139841     | 19.00%                | 35.75%<br>(N = 2045)  | 1693502.075   |
| Iran     | April 2020 | 52162      | 30.06%                | 33%<br>(N = 528)      | 642326.7207   |



#### **Sequencing contribution: march**



**Figure 2**: Doughnut charts for countries in March 2020. a) depicts the number of reported cases in each country, b) depicts the IHME estimate of the number of cases in each country, and c) depicts the number of sequences sequenced in each country.



#### **Sequencing contribution: globally**



**Figure 2**: Doughnut charts for countries between February 1<sup>st</sup> 2020 to October 31<sup>st</sup>, 2020. a) depicts the number of reported cases in each country, b) depicts the IHME estimate of the number of cases in each country, and c) depicts the number of sequences sequenced in Country.

#### <u>Aim 2</u>

Devise a weighted sampling strategy to create

sequence subsamples that are **representative** of SARS-

CoV-2 prevalence in regions around the world and

different months



# Methodology

#### Random sampling

• Randomly select *N* sequences from all sequence data available

#### Weighted sampling

- Select *N* sequences from each country in each month based on SARS-CoV-2 prevalence
- Prevalence estimated with IHME mean estimates



### **Problems with using serology tests**



**Figure 3**: A tally of the number of seroprevalence studies across the world collected on SeroTracker on December 9th, 2020. The last bar and third last bar from the right on the chart represents the total number of studies from the USA and China respectively



# Weighted sampling strategy flowchart





# Weighted sampling versus random sampling



**Figure 4**: The number of sequences to be obtained from each country if 1576 sequences from March 2020 were to be obtained via weighted or random sampling.



#### **Subsamples created**



**Figure 5**: Doughnut charts for the sequencing location of subsamples obtained via a) our weighted sampling strategy versus b) the random sampling strategy.



#### <u>Aim 3</u>

# Generate and compare the accuracy of phylogenetic trees produced through weighted sampling and random sampling



# Methodology



#### **Nextstrain Clades**





(Nextstrain)

### **Random sampling**



**Figure 6**: General clade (NextStrain) structure of phylogenetic tree produced from random sampling using BEAST2.

UNIVERSITY OF

# Weighted sampling



**Figure 7**: General clade (NextStrain) structure of phylogenetic tree produced from weighted sampling using BEAST2.

### **Comparison of Trees with Nextstrain**

**Table 3**: Earliest dates sampled for various Nextstrain clades in each subsample. The global analysis and the dedicated builds were performed by Nextstrain.

| Clade       | Random     | Weighted   | Global Analysis | Dedicated Build             |
|-------------|------------|------------|-----------------|-----------------------------|
|             |            |            |                 |                             |
| 20A.EU2     | 2020-08-17 | 2020-08-20 | 2020-09-01      | 2020-06-10 (02-04 to 05-01) |
|             |            |            |                 |                             |
| 20A/S:439K  | 2020-08-10 | N/A        | 2020-08-24      | 2020-04-03 (03-14 to 04-13) |
|             |            |            |                 |                             |
| 20A/S:98F   | 2020-10-12 | 2020-09-08 | 2020-08-28      | 2020-03-10 (01-23 to 02-19) |
|             |            |            |                 |                             |
| 20B/S:1222L | N/A        | 2020-10-07 | 2020-09-07      | 2020-07-06 (04-15 to 06-29) |
|             |            |            |                 |                             |
| 20B/S:626S  | 2020-09-21 | 2020-10-06 | 2020-12-22      | 2020-07-15 (05-31 to 07-10) |
|             |            |            |                 |                             |
| 20C/S:80Y   | 2020-09-12 | 2020-06-29 | 2020-09-21      | 2020-07-16 (04-09 to 04-20) |
|             |            |            |                 |                             |
| 20E (EU1)   | 2020-06-20 | 2020-07-10 | 2020-06-25      | 2020-04-30 (03-04 to 04-24) |
|             |            |            |                 |                             |
| 20H/501Y.v2 | N/A        | 2020-10-19 | 2020-11-17      | 2020-10-08 (07-02 to 09-20) |



### **Phylogenetic Analysis: Clock rate**



**Figure 8**: Clock rate trace files obtained from the analysis of the a) weighted sampled subsample and b) random sampled subsample.



### **Differences in Clock Rate**





(Rambaut et al., 2020)

#### Acknowledgements

#### **Supervisors**

Dr. Paul Gordon Dr. Quan Long Dr. Michael Hynes

<u>Special thanks to</u> Deshan Perera Long lab



#### Thank you for listening!

