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1 Introduction

Heart disease continues to be the leading cause of death worldwide, thereby necessitating a better

understanding of risk factors involving its occurrence. In attempts to describe the relationships

between various risk factors and the likelihood of heart disease episodes, regression analysis is

crucial for developing effective predictive models for heart disease. In our project, we utilize the

”Heart Disease Dataset” from the public repository, Kaggle, to perform regression analysis for heart

disease.

1.1 Data

The heart disease prediction data-set that we leveraged in this project consists of clinical data

collected from patients undergoing diagnostic testing heart disease in the 1980s from four different

institutions including the Cleveland Clinic in Cleveland USA, University Hospitals in Zurich and

Basel Switzerland, Hungarian Institute of Cardiology in Budapest Hungary, and Veterans Admin-

istration Medical Center in Long Beach USA. This dataset contains 1026 samples collected via

convenience sampling. Each sample comprises of 14 different attributes including both categorical

and continuous predictors and a binary target response indicating the diagnosis of heart disease (Ta-

ble 1). This comprehensive set of variables makes this data-set an invaluable resource for exploring

the association between patient risk factors and the presence of heart disease.

Table 1: Description of Variables

Variable Explanation Min Max
Age Age of the patient 29 77
Sex (1 = male, 0 = female) 0 1
cp Chest Pain Type 0 3
trestbps Resting Blood Pressure 94 200
chol Serum Cholesterol 126 564
fbs Fasting Blood Sugar (= 1 if ≥ 120) 0 1
restecg Resting Electrocardiographic Results 0 2
thalach Maximum Heart Rate Achieved 71 202
exang Exercise-Induced Angina 0 1
oldpeak ST Depression Induced by Exercise 0 6.2
slope Slope of Peak Exercise ST Segment 0 2
ca Number of Major Vessels 0 4
thal Thalium Scintigraphy 0 3
target Diagnosis of Heart Disease 0 1

This dataset was retrieved on Kaggle as a comma-separated values file (heart.csv). We selected

this data-set for our project as it contained a diverse range of categorical and continuous variables

that are important for creating a meaningful generalized linear model (GLM) for predicting heart

disease. In addition, the dataset was also highly upvoted for usability and documentation on Kaggle
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further affirming its usability in regression analysis.

1.2 Objectives

The main objectives in our project is described below:

1. Our main objective in this project was to develop a generalized linear model for predicting

the probability of heart disease given the relevant patient characteristic.

• Since the response variable in the data-set is binary, we intuitively employed logistic

regression.

• Since this data-set is widely used for heart disease prediction, one of our primary focuses

in this study was to obtain the best logistic regression model for the data-set.

2. Our second area of interest in this project involves analyzing the log-odds ratio of each

relevant variable such as sex, age, and blood pressure for heart disease.

• This is not only important for creating accurate regression modelling but also important

for fostering advancements in preventative healthcare as it allows us to pinpoint select

clinical features that are strongly predictive of heart disease diagnosis.

3. Finally, we are interested in exploring the associations and correlations between various

variables in the data-set.

Ultimately, answering these questions in our study will enhance our understanding of the disease’s

determinants and also provide a valuable tool for early detection and intervention of heart disease.
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2 Methods

2.1 Data pre-processing

Renaming Categories for Categorical Variables : To enhance the interpretability and clarity

of our model, we addressed categorical variables that had been encoded numerically. Recognizing

the importance of informative model coefficients and facilitating ease of interpretation, particularly

in the visualization phase, we undertook the task of renaming these numerically encoded categorical

variables with their corresponding descriptive strings.

Given that the initial numerical representation of categories lacked meaningful information, we

conducted an in-depth analysis of the primary data sources, including the UCI and Kaggle pages.

Drawing insights from these sources, we meticulously reassigned names to the categories, aiming to

imbue them with greater informativeness and readability. This strategic renaming process not only

contributed to the overall understanding of the model’s outputs but also significantly improved the

interpretability of visualizations associated with these categorical variables.

The table below provide a summary of the changes made:

Variable Previous Category Name New Category Name
Sex 0 female
Sex 1 male
cp 0 asymptomatic
cp 1 non-anginal pain
cp 2 atypical angina
cp 3 typical angina
fbs 0 <120mg/dl
fbs 1 >120mg/dl

restecg 0 normal
restecg 1 abnormality
restecg 2 hypertrophy
exang 0 No
exang 1 Yes
slope 0 upsloping
slope 1 flat
slope 2 downsloping
thal 1 normal
thal 2 fixed defect
thal 3 reversable defect
target 0 No disease
target 1 Disease

Table 2: Changes Made in the Names of Categories
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Missing Values : We carefully looked through the data to see if any information was missing or

if there were any ”Not Available” (NA) values. In our study, which focuses on predicting heart

disease, we’re happy to report that there were no such gaps or missing pieces of information in our

dataset. This is good news because it means that we have a complete set of data for each person in

the study, with all the details we need. Having a complete dataset makes it easier for us to analyze

and ensures that our predictions are based on solid information.

Duplicate Values : This process of handling duplicates is crucial for maintaining the accuracy and

reliability of our data analysis. Duplicate entries can introduce biases and distort the results, leading

to inaccurate conclusions. By systematically identifying and removing these duplicate instances, we

ensure that each unique combination of values contributes appropriately to our analysis, preventing

any unintentional skewing of results. This data refinement step enhances the overall quality of our

dataset, setting the stage for more accurate and dependable insights as we delve into predicting

heart disease. Removing duplicates is a common practice in data preprocessing, allowing us to work

with a cleaner and more representative dataset. We took a close look at our dataset to identify

and deal with any duplicate entries. Specifically, we found and removed a total of 723 duplicate

rows. In our context, duplicates were determined by considering entire rows where all 14 columns

contained precisely the same values.

Erroneous Values : We conducted a thorough examination of our dataset to identify and elim-

inate rows with erroneous entries, resulting in the removal of 25 observations. The criteria for

identifying these inaccuracies included instances where values for categorical variables deviated

from the expected grouping associated with their respective variables. In practical terms, this in-

volved scrutinizing categorical variables and ensuring that their values aligned with the predefined

categories. Any observations presenting values that did not correspond to the expected categories

were considered erroneous and subsequently removed from the dataset. This proactive approach to

data cleaning is essential for maintaining the integrity of our analysis, as inaccurate entries could

potentially lead to misinterpretations and compromise the reliability of our findings.

Outlier Values : In the visualization phase, we identified outlier values. We removed one outlier

observation for the cholesterol variable which was 564.

Following the completion of the data cleaning process, our dataset was refined to

include a total of 295 observations (n = 295). This dataset was included in the D2L submission

as heart-process.csv.
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Z-score standardization : We applied Z-score standardization to all six continuous variables in

our dataset, namely ”age” ”trestbps” ”chol” ”thalach” ”oldpeak” and ”ca” This standardization

technique involves transforming the variables to have a mean of 0 and a standard deviation of 1.

The purpose of this standardization was threefold:

1. Enhancing Numerical Stability: Standardizing variables contributes to improved numerical

stability in the computations involved in regression analysis. By scaling the variables to a

common scale, we mitigate issues related to the numerical precision of calculations, promoting

more robust and reliable results.

2. Mitigating Multicollinearity Impact: Standardization assists in reducing the impact of mul-

ticollinearity, a phenomenon where independent variables in a regression model are highly

correlated. Multicollinearity can introduce instability and inflated variance in regression co-

efficients. Standardizing variables helps alleviate this issue by ensuring that all variables are

on a comparable scale, making it easier to discern the individual effects of each predictor.

3. Importance in Regularization Techniques: Scaling becomes crucial when employing regular-

ization techniques such as Ridge or Lasso regression. In these techniques, the penalty term

applied to the regression coefficients is influenced by the scale of the variables. By standard-

izing the variables, we ensure that the regularization penalty is applied uniformly, preventing

any particular variable from dominating the regularization process solely based on its scale.

This ensures a fair and effective application of regularization, leading to a more reliable and

interpretable model.

In summary, the Z-score standardization of continuous variables not only enhances the numerical

stability of regression analysis but also addresses issues related to multicollinearity and ensures the

effectiveness of regularization techniques, contributing to the overall robustness of our analytical

approach.
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2.2 Data visualization

Data visualization plays a crucial role in enhancing our understanding of complex datasets by pro-

viding a visual representation of patterns, trends, and relationships. It transforms raw data into

accessible and meaningful insights, facilitating better decision-making and communication of find-

ings.

Choosing the right plot is paramount in effective data visualization. The type of plot selected

should align with the nature of the data and the insights intended for communication. For instance,

a scatter plot might be ideal for showcasing relationships between numerical variables, while a bar

chart is effective in comparing categorical data. The choice of plot significantly influences how well

the audience comprehends and interprets the information presented. That is why we decided to

design different plots for categorical and numerical variables.

Categorical Variables : To gain a more comprehensive understanding of the categorical variables,

we opted to employ bar plots as our primary visualization method. Bar plots are inherently clear and

easy to interpret. They use the length or height of bars to represent the frequency or proportion of

each category, making it straightforward for viewers to grasp the distribution of the binary outcome

across different categorical predictors. For these plots, Instead of employing a single bar plot we

opted for a more comprehensive approach by stacking 3 distinct bar plots together. This strategy

was implemented to thoroughly capture and address all the underlying information associated with

each of the categorical variables.

Here is the visual representation illustrating information for the ”sex” variable. This example is

provided to elucidate the interpretation of each component within the plot.
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Examining Legend 1 (Labeled L1), you can discern that the representation of patients diagnosed

with the disease is indicated by the salmon color, while information pertaining to patients not

diagnosed with the disease is denoted by the sky blue color. It is important to note that we used

consistent color coding for the outcome variable across all of our plots, Consistent color coding

establishes a visual coherence throughout the plots. This cohesion helps viewers associate specific

colors with distinct classes, creating a unified and easily recognizable representation.

• The top left chart (labeled A) is a count-based chart showing the absolute number of individ-

uals with and without the disease, differentiated by sex. The salmon color portions represent

individuals with the disease, while the sky blue portions represent those without the disease.

From this chart, it’s evident that there are more males with the disease than females, and

also more males without the disease compared to females.

• The bottom left chart (labeled B) is a percentage-based chart showing the proportion of

individuals with and without the disease relative to the total number of individuals within

each sex. The proportions are represented similarly with salmon for the disease and sky blue

for no disease. This chart suggests that a higher percentage of females are diagnosed with the

disease compared to males when considering the proportion within each sex.

• The chart on the right (Labeled C) illustrates the count of observations for each category of

the ”sex” variable namely ”male” and ”female”, allowing direct comparison. It is apparent

that the number of ”male” observations is nearly double that of ”female” observations.

For interpreting these charts, our primary focus is on the bottom left chart (Labeled B), which

emphasizes the percentages of disease or no disease in each category. This approach mitigates

the impact of the number of observations in each group, enhancing the interpretability of the

information.

9



Numerical Variables : When plotting numerical predictors against a binary outcome, several

important aspects should be considered to ensure the clarity, accuracy, and interpretability of the

visualization:

• Distribution Comparison : Understanding how the values of the numerical predictor vary

between the two outcome groups provides insights into potential relationships.

• Central Tendency Differences : A noticeable difference in central tendency (Mean or Median)

can suggest a potential association with the binary outcome.

• Consideration of Outliers : Outliers can disproportionately influence summary statistics, af-

fecting the interpretation of the relationship between the predictor and the binary outcome.

• Appropriate Scaling : We should ensure that the axes are appropriately scaled to avoid

distortion in the representation of the data. Inconsistent scaling can lead to misinterpretation

of the plotted information.

Taking into account all these considerations, we opted to utilize the following types of plots to

effectively represent the information contained in our numerical variables.

1. Violin Plot : We’ll employ side-by-side half violin plots for each class of the target variable.

This approach facilitates the comparison of observation distributions for each variable con-

cerning their target class. Additionally, we can examine the mean of each distribution as a

central tendency metric and compare them across target classes. The presence of long tails

in violin plots can highlight potential outliers. To ensure comparability among different vari-

ables, we’ll use their z-score standardized values instead of the original ones in the creation

of distinct violin plots.

2. lollipop plot : It is used to delve deeper into the central tendency metrics of the scaled values

for each numerical variable.

3. Parallel Coordinates Plot : It efficiently visualizes complex relationships among multiple

numerical variables, enabling the simultaneous exploration of trends, patterns, and outliers

4. Pairs Plot : It provides a concise visual summary of pairwise relationships between numerical

variables in a dataset, allowing for the identification of correlations, patterns, and potential

outliers
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2.3 Model selection

The model selection process performed in this study was an exhaustive and comprehensive process

as one of the main objectives in this study was to obtain the best logistic regression model for

predicting heart disease. Hence, in this portion of the project, we generated twelve total logistic

regression models with different combinations of variables and two-way interaction terms. After-

wards, the best model was selected based on the comparison of various metrics that portray the

model’s fit for the data.

2.3.1 Model generation

Since the response variable in the GLM is the binary outcome, ”Diagnosis of heart disease”, intu-

itively logistic regression was employed. In logistic regression, the logit link function is typically

used, however in certain instances, the use of the probit link function is better. Hence, in order

to compare both link functions, the data was fitted with both the logit and probit link functions

using all 13 predictors found in the data-set. Ultimately, we decided to use the logit link function

when generating the logistic regression models in the later stages of the experiment. Before perform

variable selection, an overall significance test for all predictors was first performed to verify that all

coefficients were not equal to zero. This was done by comparing our full model consisting of all 13

predictors to the minimal model (intercept model) in a likelihood ratio test with α = 0.05. In the

test, the null hypothesis is that βj = 0 for j = 1, ..., 13. The test statistic was defined as follows:

C = 2 [l(β)− l(βmin)] = Null deviance−Residual deviance

Note that, C ∼ χ2
18 as the degrees of freedom is equal to the difference in the number of parameters

in the regression models (some variables were dummy encoded).

After performing the overall significance test, the model generation process was partitioned into

three main processes:

1. Model generation from the Full Model

2. Model generation from the Reduced Model

3. Model generation with Lasso Regression

These processes are explained in greater detail below.

1. Model generation from the Full Model:

The full model in the experiment was defined as the logistic regression model (logit link function)

with all 13 predictors found in the in the data-set. In part 1 of model generation, we built various
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logistic regression models from the full model.

In order to explore the possibility of exponential relationships between the continuous variables

in our data-sets with the the response outcome, we fitted various full models that included the

quadratic term for our the continuous variable of interest. For example, in the case of the contin-

uous variable ”ca”, our fitted model contained all 13 predictors plus the ca2 term. Next, we used

the Z-test for the quadratic term to see if it is signficant for our data-set. If so, we continued the

process for higher power terms until there is no longer any significance in adding any exponential

terms into our fitted logistic regression model. Through this process, we obtained Model 1, which

includes all 13 predictors plus the term ca2.

Next we explored which two-way interaction terms to include in our logistic regression model.

In the first part, we added two-way interaction terms to Model 1 which aligned with current scien-

tific literature. Adding these interaction terms to model 1 created Model 2. For example we found

that:

• Sex was correlated resting blood pressure (Maranon and Reckelhoff, 2013), serum cholesterol

levels (Fletcher, 2023) and fasting blood sugar levels (Ciarambino et al., 2022).

• Resting blood pressure was correlated with fasting blood sugar levels (Lv et al., 2018) and

serum cholesterol levels (Sakurai et al., 2012).

In the second part of two-way interaction term selection, we used the backward step-wise selection

function in R, step(), with the Akaike information criterion (AIC) criterion on the full model with

all possible two-way interaction terms to obtain Model 3.

Next, we used the forward step-wise selection function in R, step(), with the AIC criterion to

obtain Model 4 and Model 5. For the step() function, we specified the maximum model as the

full model with all possible two-way interaction terms. For Model 4, the starting point that we

specified is Model 1, whereas for Model 5 the starting that was the intercept model with only the

intercept term.

2. Model generation from the Reduced Model:

The reduced model in the experiment was defined as the logistic regression model (logit link

function) with all insignificant (Z-test test: α = 0.05) coefficients removed from the full model.

The reduced model was then used to build various logistic regression models. The reduced model

included the following six predictors: sex, cp, trestbps, slope, ca, and thal.

First, exponential relationships between continuous variables in the reduced model the response

outcome was investigated. The same approach was used as previously where exponential terms
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were added onto the reduced model and kept if they were significant according to the Z-test test.

Through this process, we obtained Model 6 which consisted of the six predictors in the reduced

model plus the quadratic term ca2.

In order to explore the effect of two-way interaction terms on our logistic regression model, we

first created Model 7 which consisted of all the predictors in Model 6 and also all possible two-way

interaction terms for those predictors. Next, we explored the effect of the intercept on our logistic

regression model by removing the intercept from Model 7 to form Model 8. Similar to the previ-

ous steps performed on the full model, we also used the backward and forward step-wise selection

function, step(), in R with the AIC criterion to select which two-way interaction terms to retain

in our model. We performed backward step-wise selection on Model 7 to obtain Model 9. On

the other hand, we performed forward step-wise selection from the intercept model and Model 6

to obtain the same model, Model 10. In the forward step-wise selection process, we specified the

maximum endpoint model as Model 7. Finally, to obtain Model 11, we added two-way interaction

terms that aligned with current scientific knowledge. This included the correlation between sex and

resting blood pressure.

3. Model generation with Lasso Regression: (Model 12)

3.1. Introduction to LASSO

Lasso (Least Absolute Shrinkage and Selection Operator) regression is a regularization technique

commonly used in linear regression to handle high-dimensional datasets. It introduces a penalty

term based on the absolute values of the regression coefficients, encouraging sparsity in the model.

This makes Lasso particularly useful for feature selection when dealing with datasets with many

features.

3.2. Mathematical Formulation

The standard linear regression model aims to minimize the sum of squared differences between

predicted and actual values. Lasso extends this by adding a regularization term:

minimize

(
n∑

i=1

(yi − β0 − β1xi1 − β2xi2 − . . .− βpxip)
2 + λ

p∑
j=1

|βj|

)

When λ is zero, Lasso reduces to standard linear regression. As λ increases, the penalty for non-

zero coefficients also increases. This encourages some coefficients to become exactly zero, effectively

performing feature selection.

3.3. Properties

Lasso regression has several key properties:
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• Feature Selection: Lasso tends to shrink the coefficients of less important features to exactly

zero, effectively performing automatic feature selection .This is why LASSO is chosen over

other techniques such as Ridge or elasticnet (combination of LASSO and Ridge).

• Sparsity: As the regularization parameter λ increases, the number of non-zero coefficients

decreases, leading to a sparse model.

• Trade-off: The choice of λ involves a trade-off between fitting the training data well and

keeping the number of selected features to a minimum.

3.4. LASSO combined with Cross Validation

In the lasso technique, the optimal value of the regularization parameter, λ, is typically chosen

through a process called cross-validation. Cross-validation involves partitioning the dataset into

multiple subsets, training the model on some of these subsets, and then evaluating its performance

on the remaining subsets. This process is repeated several times, and the average performance is

used to assess how well the model generalizes to new data.

Data: X (features), y (target variable)

Result: Optimal λ and coefficients βj

for λ in a range of candidate values do

Train Lasso regression model with regularization parameter λ;

Compute performance on validation set;

end

Identify the optimal λ that minimizes validation error;

Train Lasso regression model on the entire dataset with the optimal λ;
Algorithm 1: Lasso Regression with Cross-Validation

3.5. LASSO and CV on our Dataset

We made use of lasso regression technique to perform variable selection on the data with all the

13 variables, ca2, and all of their corresponding two-way interaction terms; we named it (Model 12)

The Cross-Validation method offered λ = 0.06611 to be optimal, which results in 18 nonzero

coefficients, and a Standard Error of 0.04026.

The plot of log(λ) against the deviance in Lasso regression illustrates the trade-off between model

complexity and goodness of fit. As λ increases, the deviance typically rises, reflecting increased reg-

ularization and model simplicity. The optimal λ is often identified at the point where the deviance

is minimized, striking a balance between model sparsity and predictive performance.
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Figure 1: Lasso Regularization Path: log(λ) vs. Deviance

2.3.2 Model diagnostics

To gauge the performance of each model that we obtained in the model generation process, we

calculated the following metrics for each model:

1. Residual deviance D(Y, µ̂): The residual deviance was either directly obtained from the

GLM in R using deviance(model), or calculated by:

D(Y, µ̂) =
n∑

i=1

(rDi )
2

where rDi is the deviance residuals. Note that D(Y, µ̂) ∼ χ2
n−(q+1) where n is the number of

observations and q is the number of predictors in the model. With this, we can calculate the

p-value for the deviance where H0 is that the model fits the data well.

2. Akaike information criterion (AIC): The AIC was either obtained directly in R with

AIC(model), or calculated by:

AIC = 2k − ln(L̂) = 2k +D(Y, µ̂)

where k is the number of parameters in the model and L̂ is the maximum value for the

likelihood function for the model.

3. McFadden’s Pseudo-R2: This metric tells how well the model explains the variation in the

data. It was calculated by:

R2 = 1− residual deviance

null deviance
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4. Likelihood ratio test statistic: The likelihood ratio test statistic was calculated by:

C = 2[l(b)− l(bmin)] = Null deviance−Residual deviance

where l(b) is the likelihood of the model of interest and l(bmin) is the likelihood of the minimal

model containing the intercept only. Note that C ∼ χ2
q where q is the number of predictors

in the model of interest. With this, we can calculate the p-value for the likelihood ratio test

where H0 is that all coefficients except for the interest in the model of interest is equal to 0.

5. Mean-squared error (MSE) for prediction: The mean squared prediction error was either

directly obtained through cross-validation with 10 folds via the cv.glm() function from the R

library boot, or it was calculated by:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

where Ŷi is the predicted outcome from the logistic regression model. Note that for the MSE

calculated via cross-validation, the average of ten iterations was calculated.

2.4 Final model

As of result of the favourable metric calculations for Model 5, we ultimately selected Model 5 as

the best model in our experiment. In this part of the study we obtained the 95 percent confidence

intervals for our coefficient estimates using the confint() function in R as well as the fitted coefficient

estimates using the coef() function. We also checked generalized linear model assumptions using

residual plots for Model 5.
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3 Results

3.1 Data visualization

In this section, we’ll highlight key findings from our visualizations, featuring only the essential

charts, while the remaining visuals are provided in the appendix to streamline the content.

Categorical Variables

• Chest Pain Type

This plot reveals that the percentage of patients diagnosed with the disease is lowest among in-

dividuals without any symptoms of chest pain, followed by those with typical angina, atypical

angina, and non-anginal pain.

• Exercise Induced Angina

This plot indicates that the percentage of patients diagnosed with the disease is lowest among

those who experienced exercise-induced angina.
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• Resting Electrocardiographic Results

In this visual representation, it becomes evident that the percentage of patients diagnosed

with the disease is lowest among those whose resting electrocardiographic results indicate hy-

pertrophy, followed by individuals with normal and abnormal results. However, it’s important

to note that the number of observations for individuals with hypertrophy is significantly lower

than the other two categories, indicating that the diagnostic percentage for this category may

not be reliable. Excluding this category, the percentage of patients diagnosed with the disease

is lowest among individuals with normal resting electrocardiographic results, followed by those

with abnormal results.

Numerical Variables

• Violin Plot

The extended tail in the Serum Cholesterol distribution suggests the presence of a potential

outlier in this variable, warranting further investigation.
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• Pairs Plot

presence of a possible outlier in serum cholesterol is also visible in the scatter plots. Upon a

thorough examination of the dataset, a decision was made to exclude this observation reduc-

ing the number of our observations to 295. the observation was for a patient with cholesterol

level of 564. Given that the mean for this variable is 247 with a standard deviation of 52,

it is evident that this observation significantly deviates from the typical range. By removing

this outlier, our dataset becomes more homogenous, allowing our models to better capture

the general patterns in the observations without being unduly influenced by extreme values.

It is observed from the data that %68 of the patients in the sample were males and the

average age among all the patients was 54.52. The average resting blood pressure was 131.60,

which is higher than the normal (120). This is not surprising since the sample has been taken

from the people who came to the hospital with heart-related symptoms However, the average

cholesterol level is 247.16 with a standard deviation of 51.98. This is noticeable since a normal

cholesterol level should be less than 200 mg/dL. A total cholesterol level of 200 to 239 mg/dL is

borderline high; a total cholesterol level of 240 mg/dL (6.21 mmol/L) or greater is high. This

provides further evidence of the observation with cholesterol level equal to 564 being an outlier.

Among our numerical predictors, the most substantial correlation is observed between thalach

and age, yielding a correlation coefficient of -0.396. Additionally, a notable correlation exists
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between thalach and oldpeak, with a coefficient of -0.347. It is crucial to acknowledge these

correlations, especially if multicollinearity becomes a concern in subsequent stages of analysis.

Monitoring these relationships will be integral in ensuring the stability and reliability of our

modeling efforts.

3.2 Model selection

In this section we discuss the main findings during the model selection process. For brevity, only

key results are discussed, while supplementary results may be found in the appendix.

We first began the model selection process with an overall significance test to affirm that all of

the coefficients in the logistic regression model were not all equal to zero (H0 : βp = 0 for

p = 1, ..., 13). From the overall significance test we obtained C = 221.24 and correspondingly

a p-value of 5.442165× 10−37 << α. Hence, we rejected the null hypothesis and concluded that all

coefficients were not equal to zero in the logistic regression model. Consequently, we searched for

which coefficients to include in our model afterwards.

In the model selection process we explored the use of different link functions on the logistic regres-

sion model. We found that the logit link function performed slightly better than the probit link

function in terms of AIC (224.18 vs 225.71) and residual deviance (186.18 vs 187.71) respectively

when fitting the full model. Although the improvements in these metrics can be deemed negligible,

the main advantage of the logit link function was that its coefficients are easily interpretable. Hence,

we decided to use the logit link function to generate twelve different logistic regression models with

various combinations of predictors and two-way interaction terms.

Since our data included various continuous variables (age, trestbps, chol, thalach, oldpeak, ca), we

used the Z-test with α = 0.05 to determine whether any of these variables contained higher order

exponential relationships with the response outcome (target) in the full model. We found that

the ca predictor had a quadratic relationship (ca2) with the response variable as it had a p-value

of 0.003136 associated with its z statistic (-2.954). Meanwhile, we did not find any other higher

exponential relationships for the variable ca. This result involving ca2 remained consistent when

investigating the reduced model as well. Hence this quadratic term was included in both Model 1

and Model 6.

Through our preliminary search of scientific literature, we found proof that certain variables within

our dataset had known correlations with each other. These correlations were added to Model 1 and

Model 6 respectively to give Model 2 and Model 11 respectively. The inclusion of these interaction

terms resulted in very minor improvements in terms of residual deviance but when penalizing for
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additional coefficients, it resulted in a decrease in performance as indicated by the AIC metric

(Table 3).

In addition to manual interaction term selection, we also used automated algorithmic functions in

R to select the best two-way interaction terms for Model 1 and Model 6 using the AIC criterion.

In the process we used the backward and forward step-wise variable selection process which gen-

erated different logistic regression models. In all of the models produced, they included two-way

interaction terms which affirmed the belief of correlations between predictors in our data-set. Inter-

estingly, in our results for Model 3 which involved backward step-wise variable selection from the

full model with all possible interaction terms, we obtained an residual deviance of 2450.968 which

was much greater than the null deviance (407.162). As a result of this computed residual deviance,

other metrics such as AIC and R2 for Model 3 were both extremely unfavorable and erroneous.

Correspondingly, Model 3 had the greatest MSE out of all the models included and was unexpect-

edly the worst model obtained during our experiment. This demonstrates the shortcomings of the

backward variable selection function step() in R. On the contrary, Model 5 which was obtained from

forward step-wise variable selection from the intercept model, was the best model obtained in the

experiment. Not only was it’s residual deviance by far the lowest amongst all models but it had a

superior AIC metric and R2 value (0.9235). Interestingly, this model however, did not perform the

best in terms of MSE which suggests that model fit towards the data does not necessarily provide

the best predictions.

Moreover, We also explored the effect of the intercept by fitting our reduced model with all possible

two-way interaction terms without an intercept. The difference of including an intercept term in

our model was shown through the constrast between Model 7 and Model 8 which only differ by the

intercept term. In terms of performance, both models were practically equivalent in terms of all

computed metrics. However, removing the intercept in a multiple regression model is an unconven-

tional step and is generally not recommended unless provided with specific theoretical or practical

reason for doing so. Hence, the removal of the intercept was not further explored in the other steps

involving two-way interaction term selection.

Although Lasso regression penalizes for having additional coefficients, we found that Model 12

which was derived with Lasso regression actually had a moderately high AIC metric compared to

the other models that we obtained in this study. In terms of other aspects such as MSE and R2,

Model 12 performed similarly to the other Models obtained from stepwise variable selection using

the Reduced model.

Finally, we also computed the dispersion parameter in our logistic regression model to investigate

whether overdispersion was confounding any of our results. We found that the overdispersion
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parameter ϕ = D(Y,µ̂)
n−q

= 31.130
(295−56)

= 0.1297 < 1 for the full model. Hence our model was not suspect

for overdispersion and quassi-logistic regression models were not further explored.

Table 3: Model Metrics for Model Comparison

Model Deviance AIC NullDeviance R2 lrt lrt pval MSE
Model 1 177.576 217.576 407.162 0.5639 229.586 1.45× 10−37 0.1180
Model 2 174.178 224.178 407.162 0.5722 232.984 1.20× 10−35 0.1249
Model 3 2450.968 2694.968 407.162 -5.0196 -2043.807 1 0.3005
Model 4 56.604 160.604 407.162 0.8610 350.558 7.02× 10−46 0.1745
Model 5 31.130 143.130 407.162 0.9235 376.032 6.01× 10−49 0.2065
Model 6 193.105 217.105 407.162 0.5257 214.057 4.05× 10−39 0.1132
Model 7 140.077 264.077 407.162 0.6560 267.085 6.00× 10−27 0.1862
Model 8 140.077 264.077 408.957 0.6575 268.880 1.43× 10−27 0.1903
Model 9 181.754 213.754 407.162 0.5536 225.407 5.52× 10−39 0.1137
Model 10 181.754 213.754 407.162 0.5536 225.407 5.52× 10−39 0.1137
Model 11 191.613 217.613 407.162 0.5294 215.549 8.64× 10−39 0.1128
Model 12 169.7 251.762 407.1618 0.5832 172.925 3.93× 10−18 0.1202
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3.3 Final model

Model 5 was the final model that was selected from the model selection process. Model had the

lowest residual deviance indicating the best fit for the data. Moreover, Model 5 also had the lowest

AIC which penalizes for including additional coefficients which affirmed its conciseness. Accord-

ingly, in Model 5, R2 = 0.9235, thus showing that Model 5 explained for 92 percent of the variation

in the data. Moreover, the likelihood ratio test also indicated that all coefficients in Model 5 were

significant. Despite having superior fit for the data, Model 5 had mediocre predictive performance

as reflected by its sub-par MSE of 0.2065.

Model 5 included the following coefficients and two-way interaction terms:

• Coefficients (10): thal, ca, cp, slope, sex, ca2, oldpeak, trestbps, thalach, chol

• Two-way interactions (7): thal:ca, slope:trestbps, thal;oldpeak, slope:oldpeak, slope:sex,

sex:oldpeak, trestbps:chol

The coefficient estimates of the fitted model and 95 percent confidence intervals are shown in the

Appendix. Note that since the logit link function was used, the coefficient estimates also represented

the log-odds ratio for each risk factor in the predictive model.

The residual plots for Model 5 are shown in Figure 2 (Appendix). The top left of the figure shows

that the linearity and equal variance assumption are satisfied and the residuals are evenly distributed

around the horizontal line of y = 0.
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4 Conclusion

Through the regression analysis of heart disease, we were able to identify key risk factors amongst

clinical data for heart disease diagnosis. We also identified relationships and interactions between

variables (objective 3) using data visualization which we further verified using model selection

techniques (backward, forward, lasso, etc.). Based on our analysis of the heart disease dataset,

conducted the process of data exploration, preprocessing, and model building. We considered var-

ious logistic regression models, including those with interaction terms and exponents to consider

the relations of the predictors as well. The models were evaluated using different metrics such as

deviance, AIC, pseudo-R2, likelihood ratio test, and mean-squared prediction error. After compar-

ison of these models, we selected the final model based on its performance metrics and the number

of variables it had, but one can use other models based on different interests. The final model we

selected, Model 5, fitted our data-set extraordinarily well as demonstrated by its R2 and residual

deviance (objective 1). However, we found that it’s MSE was not optimal. This made us learn

that although a regression model might fit the dataset best, it may not always be the most optimal

model in terms of prediction.

Moreover, we found that the dispersion parameter for Model 5 was less than 1. Although we thor-

oughly discussed various methods of diagnosing and dealing with overdispersion, there was little

talk in regards to under-dispersion, which in practice might be useful. We also found that the

logit link function in logistic regression is particularly favorable, as coefficient estimates directly

provide log-odds ratio for each variable of interest (objective 2). Meanwhile, on the other hand,

through hands-on exploration of removing the intercept, we learned that the intercept serves an im-

portant role in regression models for baseline observations and should only be removed with caution.

In conclusion, the logistic regression model provided insights into the relationships between various

patient attributes and the likelihood of heart disease. The selected model can serve as a tool for

understanding and predicting heart disease based on a given new patient. Further research and

validation may enhance the robustness of our findings.
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5 Appendix

5.1 Data Visualization

Categorical Variables
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Numerical Variables
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5.2 Final model

The coefficient estimates and 95 percent confidence for Model 5 are shown in the next two tables.

Coefficient Estimate Std Error

(Intercept) -224.33 109.14

factor(thal)normal -302.42 56661.49

factor(thal)reversable defect 163.49 69.29

ca -10.47 33.23

factor(cp)atypical angina -51.86 26.95

factor(cp)non-anginal pain 54.84 29.84

factor(cp)typical angina -61.73 33.46

factor(slope)flat 242.96 111.33

factor(slope)upsloping 375.30 20843.86

factor(sex)male 135.20 60.56

I(ca2) 72.27 51.37

oldpeak -167.42 74.35

trestbps 7.86 4.45

thalach 52.09 25.41

chol -10.29 6.07

factor(fbs)¿120mg/dl 45.53 31.39

factor(thal)normal:ca 65.89 9168.60

factor(thal)reversable defect:ca 2.19 31.81

factor(slope)flat:trestbps 6.61 2.99

factor(slope)upsloping:trestbps -198.06 29060.78

factor(thal)normal:oldpeak -16.47 14220.80

factor(thal)reversable defect:oldpeak 112.16 52.80

factor(slope)flat:oldpeak 154.23 69.21

factor(slope)upsloping:oldpeak 189.75 41470.01

factor(slope)flat:factor(sex)male -94.72 38.78

factor(slope)upsloping:factor(sex)male -320.98 27981.99

factor(sex)male:oldpeak 63.13 26.68

I(ca2) : thalach -38.33 21.91

ca:thalach 21.60 12.83

factor(thal)normal:factor(sex)male 393.03 60827.28

factor(thal)reversable defect:factor(sex)male -59.36 21.67

factor(sex)male:factor(fbs)¿120mg/dl -119.68 68.45

factor(sex)male:thalach -30.41 11.10

Continued on next page
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Table 4 – continued from previous page

Coefficient Estimate Std Error

factor(thal)normal:thalach 34.33 9279.84

factor(thal)reversable defect:thalach 22.13 8.28

factor(sex)male:chol 18.25 6.38

factor(slope)flat:I(ca2) -69.13 37.00

factor(slope)upsloping:I(ca2) -118.25 10391.37

oldpeak:trestbps 11.16 5.18

ca:I(ca2) -31.87 16.52

factor(cp)atypical angina:thalach -19.35 8.36

factor(cp)non-anginal pain:thalach -81.69 57.94

factor(cp)typical angina:thalach -24.78 10.97

ca:factor(sex)male 78.83 46.83

I(ca2) : chol 6.33 8.00

ca:factor(slope)flat 77.57 44.48

ca:factor(slope)upsloping 60.26 33451.88

trestbps:chol 4.21 2.17

factor(cp)atypical angina:oldpeak -12.11 7.76

factor(cp)non-anginal pain:oldpeak 69.02 41.88

factor(cp)typical angina:oldpeak -119.95 58.55

ca:factor(cp)atypical angina -50.29 29.65

ca:factor(cp)non-anginal pain 64.66 34.88

ca:factor(cp)typical angina 3.36 14.87

thalach:chol 10.12 3.81

oldpeak:factor(fbs)¿120mg/dl 96.22 47.32

factor(slope)flat:factor(slope)upsloping 98.29 28938.82

oldpeak:thalach -48.51 12.42

chol:factor(fbs)¿120mg/dl 30.01 27.36

factor(slope)flat:trestbps:chol -40.32 18.33

factor(slope)upsloping:trestbps:chol 33.92 3785.09

factor(cp)atypical angina:oldpeak:trestbps 29.07 11.76

factor(cp)non-anginal pain:oldpeak:trestbps -7.48 6.40

factor(cp)typical angina:oldpeak:trestbps 22.22 13.85

ca:factor(sex)male:thalach 49.12 26.98

I(ca2) : factor(sex)male : thalach 32.34 21.09

ca:factor(thal)normal:factor(sex)male 100.11 32757.25

ca:factor(thal)reversable defect:factor(sex)male -62.15 18.35

Continued on next page
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Table 4 – continued from previous page

Coefficient Estimate Std Error

factor(sex)male:factor(fbs)¿120mg/dl:thalach -3.47 14.26

factor(sex)male:factor(thal)normal:thalach -36.20 9.29

factor(sex)male:factor(thal)reversable defect:thalach 48.05 17.51

factor(sex)male:factor(sex)male:chol 13.92 5.44

factor(sex)male:factor(slope)flat:I(ca2) 25.66 22.68

factor(sex)male:factor(slope)upsloping:I(ca2) 11.09 11072.94

factor(sex)male:oldpeak:trestbps -45.52 19.79

factor(sex)male:I(ca2) : thalach -4.69 9.11

factor(sex)male:ca:thalach -8.89 4.92

factor(sex)male:factor(thal)normal:factor(sex)male 142.12 22415.99

factor(sex)male:factor(thal)reversable defect:factor(sex)male 14.61 7.85

factor(sex)male:factor(sex)male:factor(fbs)¿120mg/dl 5.18 15.49

factor(sex)male:factor(sex)male:thalach -6.19 1.38

factor(sex)male:factor(thal)normal:thalach 2.17 8.29

factor(sex)male:factor(thal)reversable defect:thalach -18.22 6.68

factor(sex)male:factor(sex)male:chol -16.68 8.06

factor(sex)male:factor(slope)flat:I(ca2) 4.75 15.68

factor(sex)male:factor(slope)upsloping:I(ca2) 15.74 9983.88

factor(sex)male:oldpeak:trestbps -1.69 9.97

factor(sex)male:I(ca2) : thalach -23.81 12.12

factor(sex)male:ca:thalach -7.02 8.43

factor(sex)male:factor(thal)normal:factor(sex)male -14.80 8.55

factor(sex)male:factor(thal)reversable defect:factor(sex)male -23.09 13.65

factor(sex)male:factor(sex)male:factor(fbs)¿120mg/dl -4.47 6.59

factor(sex)male:factor(sex)male:thalach 2.43 2.91

factor(sex)male:factor(thal)normal:thalach 10.55 9.99

factor(sex)male:factor(thal)reversable defect:thalach 9.36 6.87

factor(sex)male:factor(sex)male:chol 13.46 10.24

factor(sex)male:factor(slope)flat:I(ca2) -7.43 5.96

factor(sex)male:factor(slope)upsloping:I(ca2) -5.15 28.64

factor(sex)male:oldpeak:trestbps -14.22 6.58

factor(sex)male:I(ca2) : thalach -6.99 11.88

factor(sex)male:ca:thalach 15.03 3.89

Table 4: Coefficient estimates
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Table 5: Coefficients with 95% Confidence Intervals

Coefficient 2.5% 97.5%

(Intercept) -242.42 -304.47

factor(thal)normal -1456.78 870.39

factor(thal)reversable defect 91.45 250.63

ca -11.14 -9.80

factor(cp)atypical angina -44.63 -59.44

factor(cp)non-anginal pain 48.92 31.98

factor(cp)typical angina -62.43 -61.03

factor(slope)flat 321.27 255.70

factor(slope)upsloping -36.67 781.35

factor(sex)male 134.05 136.38

I(caˆ2) 71.20 73.41

oldpeak -181.01 -187.86

trestbps 1.13 13.38

thalach 55.37 45.05

chol -12.61 -9.73

factor(fbs)¿120mg/dl 68.31 48.41

factor(thal)normal:ca -118.32 249.41

factor(thal)reversable defect:ca 1.53 2.87

factor(cp)typical angina:oldpeak NA -13.96

ca:factor(sex)male 77.78 79.83

I(caˆ2):chol 6.16 6.51

ca:factor(slope)flat 81.00 99.63

ca:factor(slope)upsloping -664.75 778.94

trestbps:chol 0.81 6.79

factor(cp)atypical angina:oldpeak -19.49 0.22

factor(cp)non-anginal pain:oldpeak 65.89 38.00

factor(cp)typical angina:oldpeak -123.53 -109.62

ca:factor(cp)atypical angina -55.94 -73.02

ca:factor(cp)non-anginal pain 53.27 63.72

ca:factor(cp)typical angina 2.55 12.35

thalach:chol 5.74 14.45

oldpeak:factor(fbs)¿120mg/dl 85.36 100.66

Table 5: 95 percent coefficient confidence intervals
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Table 6: Coefficients with 95% Confidence Intervals

Coefficient 2.5% 97.5%

(Intercept) -242.42 -304.47

factor(thal)normal -1456.78 870.39

factor(thal)reversable defect 91.45 250.63

ca -11.14 -9.80

factor(cp)atypical angina -44.63 -59.44

factor(cp)non-anginal pain 48.92 31.98

factor(cp)typical angina -62.43 -61.03

factor(slope)flat 321.27 255.70

factor(slope)upsloping -36.67 781.35

factor(sex)male 134.05 136.38

I(caˆ2) 71.20 73.41

oldpeak -181.01 -187.86

trestbps 1.13 13.38

thalach 55.37 45.05

chol -12.61 -9.73

factor(fbs)¿120mg/dl 68.31 48.41

factor(thal)normal:ca -118.32 249.41

factor(thal)reversable defect:ca 1.53 2.87

factor(slope)flat:trestbps 2.08 14.33

factor(slope)upsloping:trestbps -792.23 400.83

factor(thal)normal:oldpeak -339.71 297.74

factor(thal)reversable defect:oldpeak 37.42 196.61

factor(slope)flat:oldpeak 183.41 211.71

factor(slope)upsloping:oldpeak -642.16 1051.51

factor(slope)flat:factor(sex)male -141.41 -37.86

factor(slope)upsloping:factor(sex)male -975.45 326.86

factor(sex)male:oldpeak 54.46 94.61

I(caˆ2):thalach -40.22 -53.30

ca:thalach 26.33 17.89

factor(thal)normal:factor(sex)male -989.57 1737.02

factor(thal)reversable defect:factor(sex)male -79.82 -26.37

factor(sex)male:factor(fbs)¿120mg/dl -124.95 -168.10

factor(sex)male:thalach -43.43 -13.89

factor(thal)normal:thalach -145.37 209.16

factor(thal)reversable defect:thalach 9.44 32.22
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Table 6: (continued)

Coefficient 2.5% 97.5%

factor(sex)male:chol 8.26 23.16

factor(slope)flat:I(caˆ2) -77.05 -96.18

factor(slope)upsloping:I(caˆ2) -329.45 93.77

oldpeak:trestbps 12.13 9.68

ca:I(caˆ2) -36.24 -44.44

factor(cp)atypical angina:thalach -32.93 -7.62

factor(cp)non-anginal pain:thalach -40.41 -75.64

factor(cp)typical angina:thalach NA -13.96

ca:factor(sex)male 77.78 79.83

I(caˆ2):chol 6.16 6.51

ca:factor(slope)flat 81.00 99.63

ca:factor(slope)upsloping -664.75 778.94

trestbps:chol 0.81 6.79

factor(cp)atypical angina:oldpeak -19.49 0.22

factor(cp)non-anginal pain:oldpeak 65.89 38.00

factor(cp)typical angina:oldpeak -123.53 -109.62

ca:factor(cp)atypical angina -55.94 -73.02

ca:factor(cp)non-anginal pain 53.27 63.72

ca:factor(cp)typical angina 2.55 12.35

thalach:chol 5.74 14.45

oldpeak:factor(fbs)¿120mg/dl 85.36 100.66
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Figure 2: Residual plots for Model 5
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5.3 Code

The code used to conduct the experiment is provided in a separate Rmarkdown file and the knit

file is attached below with the code.
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