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Introduction



Phylogenetic analysis

Phylogenetics is the study of evolutionary history and relationships through 
the analysis of heritable traits such as genomic sequences
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Relevance to COVID-19 Pandemic

Viral agent of COVID-19: SARS-CoV-2 

Outcomes from phylogenetic analyses 
(genomic epidemiology):

• Probable zoonotic origin was found

• Elucidation of multiple episodes of the 
Founder effect during the early pandemic 

• Identification of Infection sources, “super-
spreaders” and asymptomatic individuals
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Bayesian Phylogenetics

Advantageous over conventional methods especially for viral outbreaks

Incorporates existing knowledge through various prior models:
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Generalised time reversible modelBirth-death skyline model

Assumptions:

Independent transversions

Independent transitions

Unequal base frequencies
λ – transmission rate
δ – rate of becoming non-infectious

Assumption: 
sampled 
individual does 
not remain 
infectious



Limitations with Phylogenetic Analysis

Inference through phylogenetic analyses is a complex and exhaustive process:
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The goal to obtain the maximum clade credibility (MCC) tree - most 
reasonable evolutionary relation given the estimated Bayesian parameters 

Often accompanies long run-times and intensive computational demand

# rooted trees =
2𝑛−3 !

2𝑛−2 𝑛−2 !

# unrooted trees =
2𝑛−5 !

2𝑛−3 𝑛−3 !

# sequences (n) # rooted trees # unrooted trees

2 1 1

5 105 15

10 3.44e7 2.03e6

15 2.13e14 7.91e12

20 8.20e21 2.21e20



Current methods

Many studies have proposed optimization methods:

• RAxML provides features for parallelizing maximum likelihood calculations 
to speed up computations 

• matOptimize, which was inspired by the overwhelmingly number of SARS-
CoV-2 sequences available, also optimizes maximum parsimony based 
phylogenetic analyses through parallelization and memory-efficient data 
structures 

Lack of significant breakthroughs in terms reducing run-times for Bayesian 
phylogenetic analyses
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In this paper, we propose a parallelization method 

for Bayesian phylogenetic analysis using BEAST2



Methodology



Datasets

Simulation data: Two HIV1 simulated sequence datasets each with 10
subsamples of 1000 sequences were generated with the simulation
software FAVITES using established parameters for HIV from literature:

i. 1st dataset – perfect sequence sampling

ii. 2nd dataset – 10% sequence sampling rate

SARS-CoV-2 data: Six total subsamples of 1000 sequences of SARS-CoV-2
were obtained from GISAID database using random (Augur) and weighted
(Nybbler) sampling from February 1st, 2020 to October 31st, 2020.
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Software used

• MAFFT: create multiple sequence alignments for nucleotide 
sequences

• Beauti: Configuration for BEAST2 analysis 

• BEAST2: Bayesian analysis of molecular sequences 

• Logcombiner: Combining the output from multiple BEAST2 runs

• Treeannotator: Finding maximum clade credibility tree

• TreeCMP: Calculating similarity between phylogenetic trees
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Figure 1: Overview 

of the Bayesian 

phylogenetic 

analyses 

performed in the 

study. Differences 

in methodology 

between MCMC 

ran in parallel and 

sequentially are 

shown along with 

the corresponding 

run-time for each 

step in the 

procedure. 



Analysis of results (difference between parallel and 
sequential)

Two main components:

1. Comparison of parameter estimates (i.e., substitution rates & gamma 
rate parameter) from parallel computations with sequential 
computations and/or ground-truth

2. Comparison of phylogenetic trees (i.e., distance metrics) from parallel 
computations with sequential computations and/or ground-truth

Statistical tests such as U-test and T-test were performed to check 
significance
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Results



Simulation dataset #1 –
perfect sampling
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Figure 2: Boxplots from ten parameter estimates from MCMC phylogenetic analyses ran in parallel and sequentially 

on simulated HIV data with perfect sampling rate. Significant p-values from the U-test (as a line) and t-test (directly 

above) are labelled. Figures with different vertical axis scaling were used due to differences in the ranges of values.

GTR estimates
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Figure 3: Violin plots from 

parameter estimates from 

twenty-nine independent MCMC 

chains (100-million iterations) 

from the phylogenetic analysis 

performed on the first replicate 

of sequences in the HIV dataset 

perfect sampling rate. The 

parameter estimates for all 29 

MCMC chains combined 

(“combined”) and parameter 

estimates from the MCMC run 

sequentially (“sequential”) on the 

same dataset are also shown. 

Horizontal dashed lines 

represent the true value 

(standard) for each parameter. 

GTR estimates
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Figure 4 : Boxplots from ten distance metrics calculated by comparing MCC phylogenetic trees obtained from MCMC 

with “true” trees defined in the simulated HIV data with perfect sampling rate. Significant p-values from the U-test 

comparing the distances from the sequential and parallel samples are labelled. 

Tree similarity



Simulation dataset #2 –
10% sampling
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Figure 5: Boxplots from parameter estimates from MCMC phylogenetic analyses ran in parallel and sequentially on 

simulated HIV data with 10% sampling rate. Significant p-values from the U-test (as a line) and t-test (directly above) 

are labelled. Figures with different vertical axis scaling were used due to differences in the ranges of values 

GTR estimates
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Figure 6: Violin plots of 

parameter estimates from 

twenty-nine independent MCMC 

chains (100-million iterations) 

from the phylogenetic analysis 

performed the first replicate of 

sequences in the HIV dataset 

10% sampling rate. The 

parameter estimates for all 29 

MCMC chains combined 

(“combined”) and parameter 

estimate from the MCMC ran 

sequentially (“sequential”) on 

the same data are also shown. 

Horizontal dashed lines 

represent the true value 

(standard) for each parameter. 

GTR estimates
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Figure 7: Boxplots from ten distance metrics calculated by comparing MCC phylogenetic trees obtained from MCMC 

with “true” trees defined in the simulated HIV data with 10% sampling rate. Significant p-values from the U-test 

comparing the distances from the sequential and parallel samples are labelled. 

Tree similarity



Real world dataset – SARS-
CoV-2
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Figure 8: Boxplots from six parameter estimates from MCMC phylogenetic analyses ran in parallel and sequentially 

on SARS-CoV-2 data. Significant p-values from the U-test (as a line) and t-test (directly above) are labelled. 

GTR estimates
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Figure 9: Boxplots from distance metrics calculated by comparing MCC phylogenetic trees obtained from sequential 

and parallel MCMC runs on simulated HIV data with perfect sampling, simulated HIV data with 10% sampling rate, and 

SARS-CoV-2 data. Significant p-values from the U-test comparing the distances between the metrics from each 

dataset are labelled. 

Tree similarity



Conclusion



Final remarks
Overall experimental run-times were reduced by almost 84 days owing to the parallelization

Parameter estimates:

• The sequential MCMC runs provided no significant advantage predicting phylogenetic parameters over
the parallel MCMC runs in our analyses involving simulated data

• Even in the parameter estimates from SARS-CoV-2 data, no significant differences in parameter
estimates were observed

Phylogenetic tree predictions:

• Distance metrics calculated in the simulation study also suggested that MCC phylogenetic trees obtained
from parallel and sequential MCMC were mostly similar except for branch lengths

• In general, our parallelization methodology was less consistent for the real-world SARS-CoV-2 data

• Most of the differences lay in the scaling of the phylogenetic trees and not in the topology of the
phylogenetic trees for the simulation dataset whereas in the SARS-CoV-2 dataset, differences were
found in the topology as well
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Thank you for attending!
Feel free to ask any questions!

David Yang
For any inquiries I may be reached at david.yang1@ucalgary.ca

mailto:david.yang1@ucalgary.ca


Methodology
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• Randomly select N sequences from all sequence 
data available

Random sampling

• Select N sequences from each country in each 
month based on SARS-CoV-2 prevalence

• Prevalence estimated with IHME mean estimates

Weighted sampling



Site models
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Differences in Clock Rate
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(Rambaut et al., 2020)
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